
Diagrammatic Reasoning With EGs and EGIF

John F. Sowa

Abstract. Diagrammatic reasoning dominated mathematics until algebraic methods became
popular in the 17th century. Although Peirce developed the algebraic notation for predicate
calculus in 1885, he kept searching for a more iconic graph-based logic. In 1897, he developed
existential graphs (EGs), which have the full expressive power of the ISO standard for Common
Logic (CL). In the last two decades of his life, Peirce wrote extensively about diagrammatic
reasoning as a general theory and EGs as the formal representation. They are two aspects of the
same theory. Peirce’s rules of inference for EGs can be generalized to any notation for logic,
linear or graphic. Two additional rules, which he described informally, are observation and
imagination. For precisely defined diagrams, as in Euclid’s geometry, those operations can be
defined formally. To bridge the gap between algebra and diagrams, the Existential Graph
Interchange Format (EGIF) has a formal mapping to EGs and to Common Logic. When the rules
of observation and imagination are defined in terms of EGIF, they enable any software developed
for Common Logic to be used in diagrammatic reasoning.

This is a slightly revised preprint of an article that was published in Cuadernos de sistemática
peirceana 8, Bogotá: Centro de Sistemática Peirceana, 2016, pp. 44-76..

1. Syntax of Existential Graphs
Charles Sanders Peirce was a pioneer in logic. Although Frege published the first complete system of first-
order logic in 1879, no one else adopted his notation. Peirce published the algebraic version of FOL and HOL
in 1885. With a change of symbols by Peano and some extensions by Whitehead and Russell, Peirce-Peano
algebra is still the most widely used logic today (Putnam 1982). But as early as 1882, Peirce experimented
with graph notations to express “the atoms and molecules of logic.” In 1897, he developed existential graphs
(EGs) as a notation that expressed the semantics of first-order predicate calculus with equality. For the
propositional EGs (Alpha) and first-order EGs (Beta), Peirce used the same structure and rules of inference
in every manuscript from 1897 to 1911. For Gamma graphs, which represent metalanguage, higher-order
logic, and modal logic, he developed syntactic and semantic variations (Roberts 1973; Pietarinen 2006).
For diagrammatic reasoning, see Diagrammatology by Stjernfelt (2007).

The examples in Figures 1 to 3 and the explanations by Peirce are taken from a tutorial he wrote in 1911
(NEM 3:159). The EG on the left of Figure 1 asserts that there is a phoenix. The line, which he called a
line of identity, represents existence. By itself, the line asserts “There is something.” The word phoenix is
the name of a relation type. The line attached to the name asserts “There exists a phoenix.” For the other
two EGs, Peirce explained, “To deny that there is any phoenix, we shade that assertion which we deny as a
whole [EG in the middle]. Thus what I have just scribed means ‘It is false that there is a phoenix’. But the
[EG on the right] only means ‘There is something that is not identical with any phoenix’.”

Figure 1. Three existential graphs

To indicate negation in his early EGs, Peirce used an unshaded oval enclosure, which he called a cut or a sep
because it cut or separated the sheet of assertion into a positive (outer) area and a negative (inner) area. In
the later versions, he added shading to highlight the distinction between positive and negative areas. The

following table shows the Existential Graph Interchange Format (EGIF) for each of the graphs in Figure 1
and the corresponding formula in predicate calculus (Peirce-Peano algebra).

Figure 1 EGIF Predicate Calculus

Left (phoenix *x) x∃ phoenix(x)

Middle ~[(phoenix *x)] ~ x∃ phoenix(x)

Right [*x] ~[(phoenix x)] x∃ ~phoenix(x)

In the EGIF for the graph on the left of Figure 1, the parentheses enclose the name phoenix of a monad
(monadic relation) and a defining label *x. The defining label represents the beginning of a line of identity
in the graphic EG. It is mapped to an existentially quantified variable x∃ in predicate calculus. For the EG
in the middle, the shaded oval is represented in EGIF by a tilde ~ for negation and a pair of square brackets
to enclose the negated subgraph: ~[]. For the EG on the right, the beginning of the line of identity is outside
the shaded oval. Since there is no relation outside the negation, the defining label is contained in a
coreference node [*x] in front of the negation. Inside the parentheses of the relation, the label x without an
asterisk is a bound label that is within the scope of the defining label *x on the outside.

When an oval is drawn inside another oval, the doubly nested area is positive (unshaded), as in Figure 2.
Any area nested inside an odd number of ovals is shaded, and any area inside an even number of ovals
(possibly zero) is unshaded. As Peirce said, “The graph [on the left] asserts that it thunders without
lightning... a denial shades the unshaded and unshades the shaded. Consequently [the graph on the right]
means ‘If it thunders, it lightens’.” Since a nest of two negations occurs frequently in EGs, Peirce called it
a scroll and drew it without raising his pen.

Figure 2. An EG with one negation and an EG with two negations

In EGs and EGIF, conjunction is implicit; no symbol is required. When EGIF is translated to predicate
calculus with just the operators ∧,, ~ and ∃, the scope of the x∃ quantifier is identical to the scope of the
defining label *x. EGIF also uses the option of replacing the two negations with the keywords If and Then.
That option has no effect on the scope of defining labels. But when predicate calculus uses the implication
operator ⊃, the x∃ quantifier must be moved to the front and be converted to the universal quantifier x∀ ..
That conversion is not necessary with EGs or EGIF.

Figure 2 EGIF Predicate Calculus

Left (thunder *x) ~[(lightning x)] x (thunder(x) ~lightning(x))∃ ∧

Right ~[(thunder *x) ~[(lightning x)]] ~ x (thunder(x) ~lightning(x))∃ ∧

Optional [If (thunder *x) [Then (lightning x)]] x (thunder(x) lightning(x))∀ ⊃

Peirce continued, “A graph may be complex or indivisible. Thus [Figure 3 shows] a graph instance composed
of instances of three indivisible graphs which assert ‘there is a male’, ‘there is something human’, and ‘there
is something African’. The syntactic junction or point of teridentity asserts the identity of something denoted
by all three.”

Figure 3. There is a male African human

In EGIF, Figure 3 may be represented by three indivisible nodes followed by a coreference node [x y z],
which shows that three lines of identity refer to the same individual. Peirce called such a junction a ligature.
Since all three lines refer to the same thing, the defining labels *y and *z may be replaced by bound labels for
*x. Then the coreference node is no longer needed, and it may be deleted, as shown in the next table.

Figure 3 EGIF Predicate Calculus

Teridentity (male *x) (human *y) (African *z) [x y z] x y z (male(x) human(y) African(z) x=y y=z)∃ ∃ ∃ ∧ ∧ ∧ ∧

One label (male *x) (human x) (African x) x (male(x) human(x) African(x))∃ ∧ ∧

In modern terminology, Peirce’s indivisible graphs are called atoms. In predicate calculus, each atom consists
of a single relation followed by its list of arguments, which Peirce called logical subjects. In EGs, an N-adic
relation has N pegs, each of which is attached to a line of identity for its logical subject. In EGIF, each atom
is represented by a pair of parentheses that enclose a relation name followed by a list of defining labels or
bound labels for its logical subjects. When an EG is translated to EGIF, the labels that correspond to each
peg are listed in the order of the pegs, as viewed from left to right. When Peirce drew EGs, he was consistent
in preserving that order.

Peirce represented a proposition as a relation with zero pegs. He called it a medad; the prefix me- comes
from the Greek mêden for nothing. In EGIF, a proposition p is represented as a relation with no logical
subjects: (p). In early versions of EGs, Peirce distinguished two subsets: Alpha for propositional logic and
Beta for first-order logic. By treating medads as relations, he avoided the need to distinguish Alpha from
Beta. The same semantics and rules of inference apply to both.

Peirce: “Every indivisible graph instance must be wholly contained in a single area. The line of identity may
be regarded as a graph composed of any number of dyads ‘—is—’ or as a single dyad.” To illustrate that
option, consider the graph man—African, which may be read “There is an African man.” Replacing the line
with two copies of —is— would break the line into three segments: man—is—is—African. This EG may be
read, “There is a man that is something that is something African.” Following is the EGIF and predicate
calculus:

(man *x) (is x *y) (is y *z) (African z)

x y z (man(x) x=y y=z African(z))∃ ∃ ∃ ∧ ∧ ∧

The two copies of the dyad is are equivalent to two coreference nodes [x *y] [y *z], which may be replaced
by a single coreference node [x *y *z]. Since all three labels are coreferent, the bound label x may replace all
occurrences of the other defining labels and bound labels. The result is (man *x) (African x).

With these examples, Peirce presented EG syntax in less than three printed pages. In another four pages,
he presented the rules of inference, a brief summary of endoporeutic, and an example that shows how an
Aristotelian syllogism can be translated to an EG and proved by the EG rules of inference (Sowa 2011). As
he showed, EGs have only two explicit operators: a line to represent the existential quantifier and an oval to

represent negation. Conjunction is an implicit operator, expressed by drawing any number of graphs in the
same area. Equality is expressed by joining lines.

All other operators of first-order logic are represented by combining these primitives. Figure 4 shows three
composite operators defined in terms of nested negations.

Figure 4. Three composite operators

Figure 4 EGIF Predicate Calculus

 If p, then q. [If (p) [Then (q)]] p q⊃

 p or q. ~[~[(p)] ~[(q)]] p q∨

 Every A is B. [If (A *x) [Then (B x)]] x (A(x) B(x))∀ ⊃

Although these three operators are composite, their graphic patterns are just as readable as the algebraic
formulas with Peano’s symbols ⊃, ∨, and ∀. In fact, the explicit nesting of EG ovals directly shows the scope
of quantifiers. But the operators ∧, ∨, and ⊃ look so similar that students find it hard to remember that each
one has a different effect on the scope of quantifiers. In EGIF, the propositions or medads (p) and (q) are
enclosed in parentheses because they are represented as relations with zero logical subjects (arguments).

Figure 5. Stating that two things are not identical

Sometimes, the dyad —is— can clarify the translation of an EG to a sentence or formula. For example,
Figure 5 shows three ways of saying that there exist two things. In the EG on the left, the shaded area
negates the junction of the lines of identity on either side. To emphasize what is being negated, the EG in the
middle replaces part of the line with the dyad —is—. Therefore, that EG may be read “There is something x
that is not something y.” The graph on the right says that there exist two different things with the property P
or simply “There are two Ps.”

Figure 5 EGIF Predicate Calculus

Left [*x] [*y] ~[[x y]] x y ~(x=y)∃ ∃

Middle [*x] [*y] ~[(is x y)] x y ~is(x,y)∃ ∃

Right (P *x) (P *y) ~[(is x y)] x y (P(x) P(y) ~is(x,y)) ∃ ∃ ∧ ∧

As these examples show, EGs state identity by joining two lines and deny identity with an oval on a line. The
linear notations require named labels and symbols such as x=y or x≠y. Without labels on lines, graphic EGs
do not need special rules for replacing one label with another. But Peirce said that a complex graph with
crisscrossing lines may be clearer if some connections are shown by labels. He would erase part of a line or
ligature and place a letter, such as x, at each endpoint where the line had been erased.

In summary, EGIF has the same primitives and conventions as EGs, but with the adaptations necessary to
linearize the graphs. An oval for negation is represented by a tilde ~ followed by a pair of square brackets to
enclose the EGIF for the subgraph inside the oval. A line of identity is represented by a defining label and
zero or one bound label. (See Figure 1 for examples of defining labels with no bound labels.) The graphic
options for connecting and extending lines are shown by coreference nodes. A ligature is represented by a
coreference node with two or more labels (defining or bound). Many coreference nodes may be eliminated
by replacing several defining and bound labels with a single defining label and multiple bound labels. (See
Figure 3.) The only coreference nodes that cannot be eliminated are those that are enclosed in a negation and
show a junction of two or more lines whose defining labels are outside the negation. (See Figure 5.) For the
formal EGIF syntax, see Section 5. For more examples, see “An introduction to EGs” (Sowa 2017).

2. Common Logic
Common Logic (CL) evolved from two projects to develop parallel standards for conceptual graphs (CGs)
and the Knowledge Interchange Format (Genesereth & Fikes 1992). Eventually, the CG and KIF projects
were merged in Common Logic, for which Hayes and Menzel (2001) defined the model theory. The CL
standard specifies an abstract syntax with three dialects that express the full semantics: the Common Logic
Interchange Format (CLIF), the Conceptual Graph Interchange Format (CGIF), and the XML-based notation
XCL (ISO/IEC 24707).

Conceptual graphs are a typed version of logic, but Peirce’s untyped EGs are sufficiently general to express
the full CL semantics. To express both, the standard defines two versions of CGIF:

• Core CGIF or EGIF. A typeless notation that expresses the full semantics. EGIF is semantically
identical to core CGIF, but it also has some syntactic options that are not available in ISO standard
CGIF. A revised, but not standardized version of CGIF includes those options.

• Extended CGIF. An extension of the core, which adds a universal quantifier; type labels for
restricting the range of quantifiers; Boolean contexts with type labels If, Then, Either, Or,
Equivalence, and Iff; and the option of importing external text into any CGIF text.

Although extended CGIF is a typed language, it is not strongly typed, because type labels are used only to
restrict the range of quantifiers. Instead of causing a syntax error, a type mismatch in CGIF just causes the
subexpression in which the mismatch occurs to be false.

As an example, Figure 6 shows an EG and a CG for the sentence If a cat is on a mat, then it is a happy pet.
In the shaded area of the EG, the two lines of identity represent a cat and a mat, and the ligature joins the line
for the cat to the line for the pet. In the CG, the dotted line, called a coreference link, connects the concept
[Cat] to the concept [Pet]. It indicates that both concept nodes refer to the same entity. The Attr relation
indicates that the cat, also called a pet, has an attribute, which is an instance of happiness.

Figure 6: EG and CG for If a cat is on a mat, then it is a happy pet.

In both EGIF and CGIF, defining labels are shown with an asterisk, as in *x for the cat. For bound labels, ISO
standard CGIF adopted the KIF convention with a question mark as prefix, as in ?x. But EGIF and revised
CGIF omit the question mark. Following are the translations of Figure 6 to EGIF, revised CGIF, and CLIF:

EGIF: [If (Cat *x) (Mat *y) (On x y)
 [Then (Pet x) (Happy *z) (Attr x z)]]

CGIF: [If [Cat *x] [Mat *y] (On x y)
 [Then [Pet x] [Happy *z] (Attr x z)]]

CLIF: (forall (x y) (if (and (Cat x) (Mat y) (On x y))
 (exists (z) (and (Pet x) (Happy z) (Attr x z)))))

The three notations have similar and sometimes identical syntax for relations. For longer statements, there
are three syntactic differences: the conjunction and is explicit in CLIF, but implicit in the others; quantifiers
are explicit in CLIF, but just an asterisk in the others; and the scope of quantifiers is different for if-then
statements. As a result, CLIF usually requires more parentheses.

As a mathematician, Peirce recognized the importance of functions. But in his logic, he did not distinguish
functions and relations: a function of N arguments may be represented as a relation with N+1 arguments, in
which the value of argument N+1 is determined by the values of the first N. Common Logic does distinguish
functions from relations, since the unification algorithm for functional expressions is important for theorem
provers. In EG diagrams, a function may be distinguished from a relation by an arrowhead on the last line of
identity attached to the function name. Figure 7 shows an EG that represents a functional expression that
combines four functions named +1, +, sqrt, and ÷.

Figure 7: An EG that represents a functional expression

Following are three linear notations for defining a function ƒ by the expression in Figure 7. The first line is a
common algebraic notation for defining a function ƒ(x) in terms of an expression that contains x. The second
is an EGIF definition of (f x | y). The third is the CLIF equivalent of the first two.

ƒ(x) = (7 ÷ (x + 1)) + sqrt(7)

[If (number *x) (number *y) ("+1" x | *u) ("÷" 7 u | *v) (sqrt 7 | *w) ("+" v w | y)
 [Then (f x | y)]]

(forall ((x number) (y number)) (if (= y ("+" ("÷" 7 ("+1" x)) (sqrt 7)))) (= y (f x))))

This example illustrates several points: CLIF notation is closer to ordinary algebra than EGIF notation,
which requires the additional labels u, v, and w. Even though CLIF requires more parentheses, the extra
labels make the EGIF statement somewhat longer. Both CLIF and EGIF use the same names for functions
and relations; names that contain special characters, such as "+1", "+", and "÷", must be enclosed in quotes.
When an EG diagram is mapped to CLIF or EGIF, any line with an outgoing arrowhead is the last argument
of a function. All other lines attached to a function or relation, including those with incoming arrowheads,
are listed in order from left to right.

Common Logic allows quantifiers to range over functions and relations, but CL retains a first-order style of
model theory and proof theory. To support a version of higher-order logic without the computational
complexity of an infinite hierarchy of relations, the CL model theory uses a single domain D that includes
individuals, functions, and relations. The option of single domain was suggested by Quine (1954) and used
in various theorem provers that allow quantifiers to range over functions and relations (Chen et al., 1993). In
his introduction of higher-order logic in 1885 and his later model theory for EGs (endoporeutic), Peirce
assumed a single domain that contained all individuals and relations. In some manuscripts on modal logic, he

discussed multiple “universes of discourse”, but each universe contained both individuals and relations. For
these reasons, the single domain of CL semantics seems appropriate for Peirce’s version of HOL.

Common Logic is more expressive than most logic-based languages and notations. The Heterogeneous Tool
Set (HeTS) provides theorem provers for Common Logic and translators to and from CL and other logics,
including the logics for the Semantic Web (Mossakowski et al. 2014). EGIF may be translated CLIF and be
processed by the HETS tools. Delugach (2014) designed a CGIF parser and tools for generating the graphic
form of conceptual graphs. Those tools, which are available from Source Forge, may be adapted to EGs and
EGIF.

For Peirce’s own rules of inference, the model-theoretic semantics he called endoporeutic, and comparisons
with other proof procedures, see the commentary by Sowa (2011). Stewart (1996) showed that a theorem
prover based on Peirce’s rules was comparable in speed to a theorem prover based on resolution. Dau (2006)
showed that for certain kinds of proofs, Peirce’s rules could be orders of magnitude faster than the more
common methods.

3. Propositions, Situations, and Metalanguage
Peirce’s first use for the oval was to negate the graphs nested inside. But Peirce (1898) generalized the ovals
to context enclosures, which allow relations other than negation to be linked to an oval. Figure 8 shows his
example of an EG for the sentence “That you are a good girl is much to be wished.” This oval is not shaded
because it’s not negated.

Figure 8: An EG with a metalevel comment about an EG

In describing Figure 8, Peirce wrote “When we wish to assert something about a proposition without
asserting the proposition itself, we will enclose it in a lightly drawn oval, which is supposed to fence it off
from the field of assertions.” Since Peirce allowed blanks to occur in the names of relations, he used the
English sentence You are a good girl as the name of a proposition.

For Peirce and for Common Logic, a proposition is a relation with zero pegs (or arguments). In the three
notations EGIF, CGIF, and CLIF, names that contain blanks or special characters must be enclosed in double
quotes. Therefore, "You are a good girl" may be used as the name of a proposition and "is much to be
wished" as the name of a monadic relation. To express the EG in Figure 8, the monadic relation is asserted of
the proposition: ("is much to be wished" "You are a good girl").

If a proposition does not have a name, some operator is necessary to give it a name. For that purpose, the
IKL extension to Common Logic has an operator named that, which serves as a metalevel function from
propositions to names (Hayes & Menzel 2006). For example, the sentence “Bill thinks that a happy cat is on
a mat” makes a statement about a proposition that does not have a name. That proposition may be
represented by the following EGIF:

(Cat *x) (Happy *y) (Attr x y) (Mat *z) (On x z)

Literally, this EGIF says “x is a Cat; y is an instance of happiness; x has attribute y; z is a mat; and x is on z.”
Following are the EGIF and CLIF notations for mapping this statement to a name of the proposition:

(Think *u) (Agnt u Bill) (Thme u *v)
 (that (Cat *x) (Happy *y) (Attr x y) (Mat *z) (On x z) | v)

(exists (u) (and (Think u) (Agnt u Bill)
 (Thme u (that (exists (x y z) (and (Cat x) (Happy y) (Attr x y) (Mat z) (On x z)))))))

The first line of the EGIF says “There is an instance of thinking u, the agent of u is Bill, and the theme of u is

v.” The second line assigns the name v to the proposition. With its functional notation, CLIF does not
require the name v.

To support the IKL extension in EGIF, the following grammar rule may be added to Section 5.2:

Metafunction = '(' 'that' EG '|' Name ')' ;

Language about language is necessary for talking about the beliefs, desires, and intentions of the speaker and
anyone else who may be mentioned. For example, the sentence Tom believes that Mary wants to marry a
sailor, contains three clauses, whose nesting may be marked by brackets:

Tom believes that [Mary wants [to marry a sailor]].

The outer clause asserts that Tom has a belief, which is the proposition that Mary wants a situation, which is
described by the infinitive to marry a sailor. Each clause makes a comment about the clause nested in it.
References to the individuals mentioned in those clauses may cross context boundaries in various ways. The
sailor, for example, may exist in any of those three contexts:

1. Tom believes that Mary wants to meet someone who is sailor and marry him.

2. Tom believes that there is a sailor and Mary wants to marry him.

3. There is a sailor, and Tom believes that Mary to marry wants him.

The two conceptual graphs in Figure 9 represent the first and third interpretations. In the CG on the left, the
existential quantifier for the concept [Sailor] is nested inside the situation that Mary wants. Whether such a
sailor actually exists and whether Tom or Mary knows his identity are undetermined. The CG on the right
explicitly states that such a sailor exists; the connections of contexts and relations imply that Tom knows him
and that Tom believes that Mary also knows him. The second option (not shown in Figure 9) would place the
concept [Sailor] inside the context of type Proposition; it would leave the sailor’s existence undetermined, but
it would imply that Tom believes he exists and that Mary knows him.

Figure 9: Two interpretations of Tom believes that Mary wants to marry a sailor

The oval in Figure 9 represents a proposition that already has a name. Common Logic in any notation can
represent it. In Figure 9, the propositions do not have names, but the IKL operator that can create a name for
them. But the situations in Figure 9 are regions of space-time. Neither CL nor IKL has any special provision
for situations, but any version of logic that can represent propositions can specify a situation as as a region of
space-time described by a proposition.

The first step toward translating the CGs in Figure 9 to IKL is to write them in an extended version of CGIF,
which allows CGs to be nested inside concept nodes of type Proposition or Situation. Following is the CGIF
for the CG on the left:

[Person: Tom] [Believe: *x1] (Expr x1 Tom) (Thme x1 *p1)
 [Proposition: p1 [Person: Mary] [Want: *x2] (Expr x2 Mary) (Thme x2 *s)
 [Situation: s [Marry: *x3] [Sailor: *x4] (Agnt x3 Mary) (Thme x3 x4)]]

In this CGIF, Expr is an abbreviation for Experiencer, Thme for Theme, and Agnt for Agent. The CG in
Figure 9 and the corresponding CGIF use some syntactic options to make the formal statement more concise
and closer to English word order. The relation Dscr (Description) relates a situation to a proposition that

describes it. These abbreviations and definitions may be expanded to Core CGIF, which is identical to EGIF:

(Person Tom) (Believe *x1) (Expr x1 Tom) (Thme x1 *p1) (Proposition p1)
 (that (Person Mary) (Want *x2) (Expr x2 Mary) (Thme x2 *s) (Situation s)
 (Dscr s *p2) (that (Marry *x3) (Sailor *x4) (Agnt x3 Mary) (Thme x3 x4) | p2) | p1)

This EGIF can then be translated to CLIF notation:

(exists ((x1 Believe)) (and (Person Tom) (Expr x1 Tom) (Thme x1 (that
 (exists ((x2 Want) (s Situation)) (and (Person Mary) (Expr x2 Mary) (Thme x2 s)
 (Dscr s (that (exists ((x3 Marry) (x4 Sailor)) (and (Agnt x3 Mary) (Thme x3 x4)))))))))))

As these examples illustrate, diagrams and “syntactic sugar” can make logic more readable. Figure 9
directly shows the nested English clauses. Although the corresponding CGIF is not quite as readable, it still
has a direct mapping to English. EGIF adds more detail, and the deep nesting of CLIF creates a tail of eleven
closing parentheses.

4. Diagrammatic Reasoning
Peirce’s writings on logic, semiotic, and diagrammatic reasoning, which had been neglected during the 20th
century, are now at the forefront of research in the 21st. Frege’s rejection of psychologism and “mental
pictures” reinforced the behaviorism of the early 20th century. But the latest work in neuroscience uses “folk
psychology” and introspection to interpret the data from brain scans (Dehaene 2014). The neuroscientist
Damasio (2010) explicitly said that brains create “images, the main currency of our minds. Ultimately
consciousness allows us to experience maps as images, to manipulate those images, and to apply reasoning to
them.” The psychologist Johnson-Laird (2002), who had written extensively about mental models, said that
Peirce’s existential graphs and rules of inference are a good candidate for a neural theory of reasoning:

Peirce’s existential graphs are remarkable. They establish the feasibility of a diagrammatic
system of reasoning equivalent to the first-order predicate calculus. They anticipate the theory of
mental models in many respects, including their iconic and symbolic components, their eschewal
of variables, and their fundamental operations of insertion and deletion. Much is known about the
psychology of reasoning... But we still lack a comprehensive account of how individuals
represent multiply-quantified assertions, and so the graphs may provide a guide to the future
development of psychological theories.

Diagrammatic reasoning is one of Peirce’s most brilliant insights. His observations, quoted below, would be
obvious to many mathematicians (Polya 1954). But they undermine the theories of Frege and the mainstream
of analytic philosophy:

All necessary reasoning without exception is diagrammatic. That is, we construct an icon of our
hypothetical state of things and proceed to observe it. This observation leads us to suspect that
something is true, which we may or may not be able to formulate with precision, and we proceed
to inquire whether it is true or not. For this purpose it is necessary to form a plan of investigation,
and this is the most difficult part of the whole operation. We not only have to select the features
of the diagram which it will be pertinent to pay attention to, but it is also of great importance to
return again and again to certain features. (EP 2:212)

The word diagram is here used in the peculiar sense of a concrete, but possibly changing, mental
image of such a thing as it represents. A drawing or model may be employed to aid the
imagination; but the essential thing to be performed is the act of imagining. Mathematical
diagrams are of two kinds; 1st, the geometrical, which are composed of lines (for even the image
of a body having a curved surface without edges, what is mainly seen by the mind’s eye as it is
turned about, is its generating lines, such as its varying outline); and 2nd, the algebraical, which
are arrays of letters and other characters whose interrelations are represented partly by their
arrangement and partly by repetitions. If these change, it is by instantaneous metamorphosis.
(NEM 4:219)

We form in the imagination some sort of diagrammatic, that is, iconic, representation of the facts,
as skeletonized as possible. The impression of the present writer is that with ordinary persons this
is always a visual image, or mixed visual and muscular... This diagram, which has been
constructed to represent intuitively or semi-intuitively the same relations which are abstractly
expressed in the premisses, is then observed, and a hypothesis suggests itself that there is a
certain relation between some of its parts — or perhaps this hypothesis had already been
suggested. In order to test this, various experiments are made upon the diagram, which is changed
in various ways. (CP 2.778)

Diagrammatic reasoning is the only really fertile reasoning. If logicians would only embrace this
method, we should no longer see attempts to base their science on the fragile foundations of
metaphysics or a psychology not based on logical theory. (CP 4.571)

Note the last quotation. It reverses Frege’s notion of psychologism: logic is not based on psychology;
instead, psychology is based on logic, which is based on mathematics, which is based on diagrammatic
reasoning, which is based on the same mechanisms of perception and action as everyday life and language.
Mental pictures are memories, reconstructions, or transformations of pictures from the outside world.

For board games like chess, diagrammatic reasoning is the essence of the game. Most chess experts can play
a good blindfold game. For them, the board and pieces are the equivalent of Peirce’s “drawing or model”,
which is a helpful, but optional aid to the imagination. To study and compare the thought processes of
mathematicians, Hadamard (1945) asked some of the most creative to answer a few questions. Their
responses support the observations by Peirce and Polya. Einstein even used Peirce’s words visual and
muscular:

The words or the language, as they are written or spoken, do not seem to play any role in my
mechanism of thought. The psychical entities which seem to serve as elements in thought are
certain signs and more or less clear images which can be voluntarily reproduced and combined...
The above-mentioned elements are, in my case, of visual and some of muscular type.
Conventional words or other signs have to be sought for laboriously only in a secondary stage,
when the mentioned associative play is sufficiently established and can be reproduced at will.

By relating logic and imagery, diagrammatic reasoning can bridge the gap between abstract symbols and
physical reality. Einstein (1944) criticized the “fear of metaphysics” (Angst vor der Metaphysik) as a
“malady (Krankheit) of 20th-century empirical philosophy.” In reviewing Quine’s Word and Object, Rescher
(1962) was struck by the absence of any discussion of events, processes, actions, and change. C. I. Lewis
(1960), whose modal logic and epistemology were strongly influenced by Peirce, criticized the sterility of
purely formal definitions:

It is so easy... to get impressive “results” by replacing the vaguer concepts which convey real
meaning by virtue of common usage by pseudo precise concepts which are manipulable by
“exact” methods — the trouble being that nobody any longer knows whether anything actual or
of practical import is being discussed.

There is a continuum from counting sticks and drawings in the sand to the most elaborate mathematics and
computer science. The methods of observation and imagination in mathematics apply to every branch of
science, engineering, and commonsense. While he was developing his ideas on existential graphs, Peirce
also produced a detailed classification of the sciences. Figure 10 is based on his outline from 1903 (CP 1.180
to 1.202) and his more detailed analyses over the next several years (CP 1.203 to 1.677 and manuscript R602).

Figure 10: Peirce’s classification of the sciences

In Figure 10, the dotted lines show dependencies: sciences on the lower right apply theories from sciences on
the upper left. Since dependence is transitive, all sciences apply structures and theories from mathematics to
their subject matter. Note that logic appears in two places: formal logic is a branch of pure mathematics;
normative logic (how people should reason) is based on mathematics, phenomenology, aesthetics, and ethics.
Empirical science depends on metaphysics, but it also has a direct dependence on mathematics. Observation
and imagination are the source of new ideas, and any version of mathematics may be used to analyze and
develop them.

Peirce’s classification is an ontology of all possible theories and their applications to anything that exists or
may exist. In his logic, Peirce considered three universes of discourse: the possible, the actual, and the
necessitated. The universe of possibilities is the domain of pure mathematics. Every mathematical theory
begins with some hypothesis expressed in a diagram or its algebraic representation. The special sciences
study the universe of actuality. The hypotheses (diagrams) of mathematics are applied to aspects of actuality
in order to make predictions. The hypotheses that make reliable predictions are the laws of science. They are
the best known approximations to the laws of nature. The totality of laws of nature is the universe of the
necessitated.

Peirce’s sequence of phenomenology, normative science, and metaphysics is compatible with Aristotle’s
topics in Tôn meta ta physica (That which is after the physics). Book Alpha begins “All people (pantes
anthropoi) by nature (physei) reach for (oregontai) knowledge (tou eidenai).” It continues with an analysis
of what people and other animals experience. That corresponds to Peirce’s definition of phenomenology:
the study of “all that is in any way or in any sense present to the mind, quite regardless of whether it
corresponds to any real thing or not” (CP 1.284 to 1.310). Reaching for knowledge implies desire (a value
judgment) for methods that determine what is true. That corresponds to Peirce’s methodeutic, which is a
branch of normative logic. Aristotle also discussed the normative values of beauty (kalos) and the good
(agathon) before analyzing the nature of being and the categories of entities (ontology).

Plato and Aristotle disagreed about the role of mathematics. Plato claimed that mathematical forms (Peirce’s
diagrams) are prior to any physical embodiment, but Aristotle claimed that mathematical entities are not
separable from sensible things. Peirce’s three universes resolve this conflict: the infinity of all mathematical
entities (diagrams) are in the universe of possibilities; those diagrams are potential signs (icons) that may be
used to describe anything in the universe of actualities; and theorems about those diagrams form the universe
of necessities. Although Aristotle did not discuss signs in his metaphysics, his earlier writings (the Organon)
covered logic and semiotic, his analysis of sêmeion, symbolon, and logos. For Peirce, mathematical
phenomenology leads to the phenomenological categories of Firstness, Secondness, and Thirdness, which
classify all the signs of perception, language, and the sciences. The dotted lines of Figure 10 show the flow
of diagrams and theorems from mathematics to the other sciences:

• Possibility. Every mathematical theory develops the implications of some possible pattern (diagram).
There is no reason for excluding any possibility or deprecating it as a fantasy.

• Actuality. The special sciences observe patterns in the actual universe, find and apply mathematical
theories about those patterns, use those theories to make predictions about what may happen, make
new observations to test those predictions, revise the theories, and repeat.

• Necessity. The propositions entailed by any pattern in any diagrammatic reasoning are necessarily
true of any occurrence of that pattern. All theories of science are fallible, but the best are reliable on
those domains for which they have been thoroughly tested.

All mathematical theories must be available for applications to the special sciences. All semiotic patterns are
necessary for representing natural and artificial languages. In fact, every artificial language in mathematics
and computer science is a disciplined application of the syntactic and semantic mechanisms of natural
languages. Value judgments are necessary for reasoning about the beliefs, desires, and intentions in any social
activity or organization — and the organizations must include colonies of any species from bacteria to
humans or even aliens from another galaxy.

When Peirce discussed diagrammatic reasoning, he did not limit his diagrams to existential graphs. He said
that a portrait or drawing, by itself, could represent a possibility. But with one or more indexes (names or
labels), a diagram could assert a proposition. Any area of an EG may contain a name that represents a
proposition, and that name may be replaced by an EG that expresses the same proposition. A generalization
of that principle would allow any labeled diagram or image that expresses the same proposition to replace the
EG. As an example, Figure 11 shows two if-then scrolls, in which nested EGs have been replaced by EGIF
(on the left) or by Euclidean diagrams (on the right). Euclid’s naming conventions are used to relate the EGIF
labels in the scroll on the left to the letters A, B, and C in the scroll on the right.

Figure 11: Replacing EGs with EGIF or with Euclidean diagrams

Both scrolls in Figure 11 state Proposition 1 in Euclid’s Elements, which Heath translated as “On a given
finite straight line, to draw an equilateral triangle.” The EGIF on the left states that proposition as a
conditional: “If there is a line AB, then there is a triangle ABC, which has sides AB, BC, and AC, and the
lines AB, BC, and AC are congruent.” The Euclidean drawings on the right express the equivalent of the
EGIF. The scroll on the right is precise and readable, and it isn’t biased toward any natural language. The
arrows in the middle of Figure 11 represent the operations that characterize diagrammatic reasoning: observe
and imagine.

Peirce discussed observation and imagination and used them in many examples, but he did not call them
rules of inference. For diagrams as precisely drawn as Euclid’s, the rules can be stated precisely and added to
the rules for EGs. For existential graphs, they define a sound and complete proof procedure for first-order
logic and for the version of higher-order logic specified by the model theory for Common Logic (which
seems to be equivalent to the version that Peirce had intended). To apply the rules to any notation, the word
diagram will be used for a statement of a proposition in any form, linear (symbolic) or graphic (mixed
imagery and symbols). Before stating the rules, three definitions are required:

• Generalization. A diagram G (stated in any form) is a generalization of a diagram S if every case
(model) for which G is true, S is also true. In particular, the blank (an empty diagram or blank area) is
always true. Therefore, the blank is a generalization of every diagram, including itself.

• Specialization. A diagram S (stated in any form) is a specialization of a diagram G if G is a
generalization of S.

• Equivalence. Two diagrams D1 and D2 are equivalent if each one is a generalization and a
specialization of the other. In particular, every diagram is equivalent to any copy of itself.

Over the years, Peirce stated his rules of inference in slightly different, but equivalent ways. The version
stated below is based on his manuscripts from 1909 to 1911. The rules are grouped in three pairs: one rule (i)
inserts a diagram, and the other (e) erases a diagram. The only axiom is the blank, which is always true. The
negation of a blank is always false. The rules of inference depend on whether an area is positive (unshaded)
or negative (shaded). They do not depend on how deeply nested any area may be.

1. (i) Insert. In a negative area, any diagram D (including the blank) may be replaced by any
specialization of D.

(e) Erase. In a positive area, any diagram D may be replaced by any generalization of D (including
the blank).

2. (i) Iterate. Any diagram D in any area c may be iterated (copied) in the same area c or into any area
nested in c. No diagram may be copied directly into itself. But it is permissible to copy a diagram D in
the same area c and then copy the copy of D into some area nested inside the original D.

(e) Deiterate. Any diagram D that may have been derived by rule 2i may be erased. Whether or not
D had been derived by 2i is irrelevant.

3. (i) Double negation. A double negation (nest of two negations with nothing between the inner and
outer) may be drawn around any diagram, subdiagram, or set of diagrams in any area. In any area,
lines of identity that originate outside the area and pass through it without a connection to anything in
the area are not considered part of that area. In EGIF, those lines would not have any bound labels in
the area through which they pass.

(e) Double negation. A double negation in any area may be erased.

For proofs that involve a mixture of notations, either linear or graphic, rule 1i for insertions in a negative
context may be allowed to insert diagrams in any notation, symbolic or graphic. Similarly, rule 1e for
erasures in a positive context may be allowed to erase diagrams in any notation. The only options that require
special treatment are the rules of iteration (2i) and deiteration (2e) in the same area:

• (2i) Observation. If a graphic diagram D occurs in any area c, any symbolic generalization or
equivalence of D may be inserted in c.

• (2i) Imagination. If a symbolic diagram D occurs in any area c, any graphic generalization or
equivalence of D may be inserted in c.

• (2e) Erasure. If a diagram D occurs in any area c, any generalization or equivalence of D that also
occurs in c may be erased.

If the diagramming conventions are precisely defined, these rules are sound: observation and imagination
would add duplicate information in area A; and erasure would delete duplicates. For scenes in nature,
photographs, and informal drawings, these rules may be useful, but fallible approximations. For more
discussion and examples, see “Peirce, Polya, and Euclid: Integrating logic, heuristics, and geometry” (Sowa
2015) and “Reasoning with diagrams and images” (Sowa 2018).

In conclusion, mental models, diagrammatic reasoning, and existential graphs are three aspects of the same
theory of cognition. They cover a continuum in methods of reasoning from a vague guess or impression to
the most precise and elaborate theories of science. Although EGs are precise, two-dimensional diagrams
are easier to show than to describe. Therefore, EGIF is convenient as a linearization that represents only

the semantically significant features. When embedded diagrams are as precisely defined as Euclid’s,
diagrammatic reasoning with Peirce’s rules can be as precise as any method designed for linear notations.
But the option of including continuous, informal, or even blurred images, also enables EGs to represent a
wide range of heuristic or commonsense methods.

For an overview of the ways Peirce anticipated and often surpassed innovations by his successors, see
“Peirce’s contributions to the 21st century“ Sowa (2006a). For more about combining metalanguage and
diagrammatic reasoning to represent modal logic, see “Worlds, models, and descriptions” (Sowa 2006b). For
the semantics of natural languages, see “From existential graphs to conceptual graphs” (Sowa 2013) and
“Two paradigms are better than one, and multiple paradigms are even better” (Majumdar & Sowa 2009).

5. EGIF Grammar
The Existential Graph Interchange Format is a linear notation that serves as a bridge between EGs and other
notations for logic. Over the years, Peirce had written manuscripts with variant notations, terminology, and
explanations. Those variations have raised still unresolved questions about possible semantic differences.
With its formally defined semantics, EGIF provides one precise interpretation of each graph translated to it.
Whether that interpretation is the one Peirce had intended is not always clear. But the EGIF interpretation
serves as a fixed reference point against which other interpretations may be compared and analyzed. When
analyzing the variations, Peirce scholars may add extensions to EGIF and define alternative semantics.

Every EGIF statement has a formally defined mapping to CGIF (Conceptual Graph Interchange Format),
whose semantics is specified in ISO/IEC standard 24707 for Common Logic (CL). The semantics of the
corresponding CGIF statement shall be called the default semantics of EGIF. To express the full CL
semantics, the grammar rules in Section 5.3 specify two extensions to first-order EGIF: (1) functions and (2)
bound labels as names of relations or functions. EG relations, by themselves, can represent functions. But
treating functions as a special case can simplify the inferences and make a major improvement in the speed
of computation. The option of bound labels as names of relations and functions goes beyond first-order logic,
and it supports some features of Peirce’s Gamma graphs.

But EGIF can also be used to represent and analyze Peirce’s graphs in his various manuscripts and
publications. His original Alpha and Beta graphs, which represent propositional and first-order logic, are
consistent with the default semantics. But with his Gamma graphs, he experimented with various extensions
for higher-order logic, modal logic, and metalanguage.

Section 5.1 presents the lexical rules for the kinds of character strings used in EGIF. These rules include
some useful CL features such as integers and character strings. Section 5.2 presents the phrase-structure
rules. Section 5.3 states context-sensitive constraints and gives some examples.

5.1 Lexical Rules

All EGIF grammar rules are stated as Extended Backus-Naur Form (EBNF) rules, as defined by the ISO/IEC
standard 14977. The lexical rules specify names and identifiers, which exclude white space except as noted.
The phrase-structure rules in Section 5.2 specify larger combinations that may have zero or more characters
of white space between constituents. Each EBNF rule is preceded by an English sentence that serves as an
informative description of the syntactic category. If any question arises, the EBNF rule shall be normative.

The following lexical categories are defined formally in Section A.2 of ISO/IEC 24707, which is the
normative specification for Common Logic and its standard dialects. The brief definitions here are
informative summaries. White space, which is any sequence of one or more white characters, is permitted
only in quoted strings and enclosed names.

• A digit is any of the ten decimal digits: 0, 1, 2, 3, 4, 5, 5, 7, 8, 9.

• An integer is an optional sign (+ or −) followed by a sequence of one or more digits.

• A string is any sequence of Unicode characters preceded and followed by a single quote '. Any single

quote internal to a string shall be represented by the string \'. Any backslash internal to an enclosed
name shall be represented by the string \\.

• An enclosed name is any sequence of Unicode characters, except control characters, preceded and
followed by a double quote ". Any double quote internal to an enclosed name shall be represented by
the string \". Any backslash internal to an enclosed name shall be represented by the string \\.

• A letter is any of the 26 upper case letters from A to Z or the 26 lower case letters from a to z.

• A white character is a space, a tab, a new line, a page feed, or a carriage return.

In addition to the above lexical categories, EGIF uses the following lexical category, which is specified in
Section B.2 of ISO/IEC 24707:

• An identifier is a letter followed by zero or more letters, digits, or underscores _.

identifier = letter, {letter | digit | '_'};

Identifiers and enclosed names are case sensitive: the identifier Apple is distinct from apple. But an identifier
is considered identical to the enclosed name with the same case and spelling: Apple is identical to "Apple",
and apple is identical to "apple". An integer is also considered identical to the enclosed name that contains
the same sign and string of digits.

5.2 Phrase-Structure Rules

Unlike the lexical rules, the phrase-structure rules for EGIF permit an arbitrary amount of white space
between constituents. White space is only necessary to separate adjacent identifiers. For example, the
following two EGIF statements are semantically identical:

~[(mother*x)~[(woman x)]]

~ [(mother * x) ~ [(woman x)]]

In English, either statement may be read “If some x is a mother, then x is a woman.” For better readability, a
nest of two negations, called a scroll, may be written with the first negation ~[replaced by [If and the second
negation replaced by [Then:

[If (mother *x) [Then (woman x)]]

Each phrase-structure rule is described by an informal English comment and by a formal EBNF rule. For any
question about syntax, the EBNF rule shall be normative. For any derivation, the rule that defines EG shall be
the starting rule. The next paragraph defines terms and conventions that relate EGIF to the graphic EGs.

An area is a space where existential graphs may be drawn or asserted. The outermost area on which EGs may
be asserted is called the sheet of assertion (SA). The SA may be cut or separated by oval enclosures, which
are areas that contain nested EGs. For propositional and first-order logic (Peirce’s Alpha and Beta graphs),
the only oval enclosures are used to represent negations. In EGIF, the area of a negation is represented as
~[EG], where EG represents an existential graph as a set of nodes (possibly empty). Some of the nodes in the
EG may be negations whose nested areas may contain more deeply nested EGs. There is no limit to the depth
of nesting. In an informal definition, a term is printed in italics, as in bound label. But the same term in
EBNF is printed in boldface, as in Bound Label. EBNF permits spaces in an identifier, but EGIF does not.

1. A bound label is an identifier. The bound label shall be bound to a defining label with the same
identifier as the bound label.

Bound Label = identifier;

2. A coreference node consists of a left bracket [, one or more names, and a right bracket]. A defining
node is a coreference node that contains exactly one defining label. An extension node is a
coreference node that contains exactly one name that is not a defining label. A coreference node that
contains two or more names states that all its names have the same denotation. For example, [x 39] is
equivalent to the equality x=39, which in CLIF is (= x 39).

Coreference Node = '[', Name, {Name}, ']';

3. A defining label consists of an asterisk * and an identifier.

Defining Label = '*', identifier;

4. A double negation is either a negation whose enclosed EG is a negation or a scroll whose first EG is a
blank.

Double Negation = '~', '[', Negation, ']' | '[', 'If', '[' 'Then', EG, ']' ']';

5. An existential graph is a set of nodes. An existential graph with zero nodes is called a blank or an
empty existential graph. The order of nodes in the set is semantically irrelevant; but any node that
contains a bound label shall follow (occur to the right of) the node that contains its defining label.

EG = {Node};

6. A function consists of a left parenthesis (, a type label, zero or more names, a vertical bar |, a name,
and a right parenthesis). The names to the left of the bar may be called the inputs, and the one to the
right may be called the output.

Function = '(', Type Label, {Name}, '|', Name, ')';

7. A name is one of a defining label, a bound label, an identifier, an enclosed name, an integer, or a
string. Note: A defining label, bound label, identifier or enclosed name may denote anything in the
universe of discourse. But an integer shall denote the number determined by its string of digits, and a
string shall denote the character string enclosed within its outer quotes.

Name = Defining Label | Bound Label | identifier | enclosed name | integer | string;

8. A negation consists of a tilde ~, a left bracket [, an existential graph, and a right bracket].

Negation = '~', '[', EG, ']';

9. A node is a coreference node, a relation, a function, a negation, or a scroll.

Node = Coreference Node | Relation | Function | Negation | Scroll;

10.A relation consists of a left parenthesis (, a type label, zero or more names, and a right parenthesis).

Relation = '(', Type Label, {Name}, ')';

11.A scroll consists of a left bracket [, the letters If, an EG, a left bracket [, the letters Then, an EG, and
two right brackets]]. Syntactically, a scroll is an optional notation for replacing the tilde in two
negations with the keywords If and Then. Both notations have identical semantics.

Scroll = '[', 'If', EG, '[', 'Then', EG, ']', ']';

12.A type label is any name except a defining label. If the name is a bound label, the value associated
with its defining label determines the type of some relation or function.

Type Label = Name - Defining Label;

To support the IKL extension to Common Logic, Section 3 suggested a grammar rule for the metalevel
operator that. The IKL syntax may be added as an option to Rule 6:

Function = '(', Type Label, {Name}, '|', Name, ')' | '(' 'that' EG '|' Name ')';

5.3 Constraints and Examples

As the grammar rules show, an EG is represented by zero or more EGIF nodes. The only constraints on the
nodes or their ordering are determined by the location of defining labels and their bound labels. The
following six rules are equivalent to the rules for scope of quantifiers in predicate calculus. These rules are
not needed for the graphic EGs, because the scope is shown by connected lines, not by labels.

1. No area may contain two or more defining labels with the same identifier.

2. The scope of a defining label shall include the area in which it occurs and any area nested directly or
indirectly in this area, unless it is blocked by rule 5 below.

3. Every bound label shall be in the scope of exactly one defining label, which shall have exactly the
same identifier. It is said to be bound to that defining label.

4. Every defining label shall precede (occur to the left of) every one of its bound labels.

5. If a defining label with some identifier x occurs in an area nested within the scope of a defining label
in an outer area with the same identifier x, then the scope of the outer defining label shall be blocked
from that area: every bound label with the identifier x that occurs in this inner area shall be bound to
the defining label in this area.

6. In any area, all permutations of the nodes that preserve the above constraints shall be semantically
equivalent.

A name enclosed in double quotes, such as "John Q. Public", may contain spaces and punctuation. To avoid
quotes, other stylistic options may be used, such as John_Q_Public or JohnQPublic, but these three variants
are distinct. To specify multiple names as synonyms, put them in a coreference node:

["John Q. Public" John_Q_Public JohnQPublic JQPublic JQP]

Peirce treated functions as special special cases of relations. He didn’t have a notation that distinguished
them from ordinary relations. In EGIF, a function may be considered a kind of relation for which the value
represented by the argument (or peg) after the vertical bar is uniquely determined by the values of the pegs
that precede the bar. The pegs to the left of the vertical bar may be called the inputs, and the one to the right
of the bar may be called the output.

• In EG diagrams, a function of N input pegs may be represented as a relation with N+1 pegs, but a line
of identity connected to its output peg shall have an arrowhead that points away from the name of the
function.

• If a line of identity connected to the output peg of one function f is connected to a peg of a function or
relation g, the output peg of f shall have an arrowhead pointing to g. Note that the EGIF (f *x | x)
would represent a function whose output peg would be connected to a line on its left that loops back
and points to its right side.

• If a line of identity with an arrowhead pointing away from a function forms a ligature with another
line, the point of contact shall be covered with a heavy dot. A single heavy dot may have more than
one arrowhead pointing to it.

• Rule of unification.. If f is a function with N inputs and if for every i from 1 to N, the i-th input of
one instance of f is coreferent with the i-th input of another instance of f, then the lines for both output
pegs would form a ligature with both pointing to the same heavy dot.

A ligature of two or more output lines in an EG corresponds to inserting a coreference node in EGIF or an
equality in other notations for logic. The unification rule, which can be proved as a derived rule of inference
from Peirce’s rules, is essential for speed in theorem-proving systems. The EGIF grammar allows functions
with zero inputs; every instance of such a function would have exactly the same output value. Therefore, the
output pegs of all instances of that function may be joined. These rules imply that a function with zero input
pegs may be used to represent a Skolem constant, which is important for many theorem provers.

Peirce did not introduce an EG notation for proper names or constants. Instead, he used monadic relations,
such as —Alexander or —is Alexander. This relation would be true of anyone named Alexander. In EGIF, a
name that is true of exactly one individual may be used as the name of a function with zero inputs. The
following function, for example, would represent a unique person who called himself Paracelsus:

("Philippus Aureolus Theophrastus Bombastus von Hohenheim" | *p)

A name such as Alexander, which may be unique in a specific context, could be written as a function with an
input peg for the context and an output peg for the person of that name: (Alexander c | *p).

In Section 5.2, EBNF Rule 12 allows any name except a defining label to be used as a type label. Therefore,
a bound label may be used as the name of a function or relation. As an example, consider the sentence “There

is family relation between any two members of the same family.” To translate that sentence to EGIF, restate it
as an if-then statement with explicit variables F, R, x, and y: “If there is a family F with members x and y,
then there is a family relation R that is true of x and y.” In EGIF, the defining label *R asserts existence, and
the bound label R is used in (R x y):

[If (family *F) (memberOf *x F) (memberOf *y F)
 [Then (familyRelation *R) (R x y)]]

References
Chen, Weidong, Michael Kifer, & David S. Warren (1993) Hilog: A Foundation for Higher-Order Logic
Programming, Journal of Logic Programming 15:3, pp. 187-230.

Damasio, Antonio R. (2010) Self Comes to Mind: Constructing the Conscious Brain, New York: Pantheon
Books.

Dau, Frithjof (2006) Some notes on proofs with Alpha graphs, in H. Schärfe, P. Hitzler, & P. Øhrstrøm, eds.,
Conceptual Structures: Inspiration and Application, LNAI 4068, Springer, Berlin, pp. 172-188.

Dehaene, Stanislas (2014) Consciousness and the Brain, New York: Viking.

Delugach, Harry S. (2014) Implementation and Visualization of Conceptual Graphs in Charger, International
J. of Conceptual Structures and Smart Applications 2:2, 1-19.

Einstein, Albert (1944) Remarks on Bertrand Russell’s Theory of Knowledge, in P. A. Schilpp, ed., The
Philosophy of Bertrand Russell, Library of Living Philosophers.

Euclid, The Thirteen Books of the Elements, translated by Thomas L. Heath, Second Edition, New York:
Dover.

Genesereth, Michael R., & Richard Fikes, eds. (1992) Knowledge Interchange Format, Version 3.0 Reference
Manual, TR Logic-92-1, Computer Science Department, Stanford University.

Hadamard, Jacques (1945) The Psychology of Invention in the Mathematical Field, Princeton University
Press, Princeton.

Hayes, Patrick (2005) Translating semantic web languages into Common Logic,
http://www.ihmc.us/users/phayes/CL/SW2SCL.html

Hayes, Patrick, & Chris Menzel (2001) A semantics for the Knowledge Interchange Format, Proc. IJCAI
2001 Workshop on the IEEE Standard Upper Ontology, Seattle.

Hayes, Patrick, & Chris Menzel (2006) IKL Specification Document,
http://www.ihmc.us/users/phayes/IKL/SPEC/SPEC.html

ISO/IEC (1996). Extended BNF, (IS 14977). Geneva: International Organisation for Standardisation.
http://standards.iso.org/ittf/PubliclyAvailableStandards/s026153_ISO_IEC_14977_1996(E).zip

ISO/IEC (2007). Common Logic (CL) — A Framework for a family of Logic-Based Languages, (IS 24707).
Geneva: International Organisation for Standardisation.

Johnson-Laird, Philip N. (2002) Peirce, logic diagrams, and the elementary operations of reasoning, Thinking
and Reasoning 8:2, 69-95.

Lewis, Clarence Irving (1960) Letter to Hao Wang, quoted on page 116 of H. Wang (1986) Beyond Analytic
Philosophy: Doing Justice to What We Know, MIT Press, Cambridge, MA.

Majumdar, Arun K., & John F. Sowa (2009) Two paradigms are better than one and multiple paradigms are
even better, in S. Rudolph, F. Dau, and S.O. Kuznetsov, eds., Proceedings of ICCS'09, LNAI 5662, Springer,
pp. 32-47. http://jfsowa.com/pubs/paradigm.pdf

Mossakowski, Till, Mihai Codescu, Oliver Kutz, Christophe Lange, & Michael Grüninger (2014) Proof
support for Common Logic, ARONL@IJCAR, http://www.iltp.de/ARQNL-
2014/download/arqnl2014_paper5.pdf

http://www.ihmc.us/users/phayes/CL/SW2SCL.html
http://www.iltp.de/ARQNL-2014/download/arqnl2014_paper5.pdf
http://www.iltp.de/ARQNL-2014/download/arqnl2014_paper5.pdf
http://jfsowa.com/pubs/paradigm.pdf
http://standards.iso.org/ittf/PubliclyAvailableStandards/s026153_ISO_IEC_14977_1996(E).zip
http://www.ihmc.us/users/phayes/IKL/SPEC/SPEC.html

Peirce, Charles Sanders (1880) On the algebra of logic, American Journal of Mathematics 3, 15-57.

Peirce, Charles Sanders (1885). On the algebra of logic. American Journal of Mathematics 7:180-202.

Peirce, Charles Sanders (1898). Reasoning and the Logic of Things, (The Cambridge Conferences Lectures
of 1898), K. L. Ketner (ed) (1992). Cambridge, MA: Harvard University Press.

Peirce, Charles Sanders (1931-1958 CP). Collected Papers of C. S. Peirce C. Hartshorne, P. Weiss, and A.
Burks (eds.), 8 vols., 1931-1958. Cambridge, MA: Harvard University Press. For Peirce’s classification of
the sciences (CP 1.176 to 1.677), see https://www.textlog.de/4258.html

Peirce, Charles Sanders (EP) The Essential Peirce, ed. by N. Houser, C. Kloesel, and members of the Peirce
Edition Project, 2 vols., Indiana University Press, Bloomington, 1991-1998.

Peirce, Charles Sanders (NEM) The New Elements of Mathematics, ed. by Carolyn Eisele, 4 vols., The
Hague: Mouton, 1976.

Pietarinen, Ahti-Veikko (2006) Signs of Logic: Peircean Themes on the Philosophy of Language, Games,
and Communication, Synthese Library, vol. 329, Berlin: Springer.

Pólya, George (1954) Mathematics and Plausible Reasoning, Volume I: Induction and Analogy in
Mathematics, Volume II: Patterns of Plausible Inference, Princeton: University Press.

Putnam, Hilary (1982) Peirce the Logician, Historia Mathematica 9:290-301, reprinted in Putnam (1990) pp.
252-260.

Quine, Willard Van Orman (1954) Reduction to a dyadic predicate, J. Symbolic Logic 19, reprinted in W. V.
Quine, Selected Logic Papers, Enlarged Edition, Harvard University Press, Cambridge, MA, 1995, pp. 224-
226.

Rescher, Nicholas (1962) The revolt against process, Journal of Philosophy, vol. 59, pp. 410-417.

Roberts, Don D. (1973). The Existential Graphs of Charles S. Peirce. The Hague: Mouton.

Sowa, John F. (2006a) Peirce’s contributions to the 21st Century, in H. Schärfe, P. Hitzler, & P. Øhrstrøm,
eds., Conceptual Structures: Inspiration and Application, LNAI 4068, Berlin: Springer, pp. 54-69.
http://jfsowa.com/pubs/csp21st.pdf

Sowa, John F. (2006b) Worlds, models, and descriptions, Studia Logica, Special Issue Ways of Worlds II,
84:2, 323-360. http://jfsowa.com/pubs/worlds.pdf

Sowa, John F. (2008) Conceptual graphs, in F. van Harmelen, V. Lifschitz, and B. Porter, eds., Handbook of
Knowledge Representation, Amsterdam: Elsevier, pp. 213-237. http://jfsowa.com/cg/cg_hbook.pdf

Sowa, John F. (2011) Peirce’s tutorial on existential graphs, Semiotica 186:1-4, 345-394.
http://jfsowa.com/pubs/egtut.pdf

Sowa, John F. (2013) From existential graphs to conceptual graphs, International Journal of Conceptual
Structures 1:1, 39-72. http://jfsowa.com/pubs/eg2cg.pdf

Sowa, John F. (2015) Peirce, Polya, and Euclid: Integrating logic, heuristics, and geometry, talk presented at
the conference of the American Philosophical Association in Vancouver, Canada. Revised and extended
slides (2018), http://jfsowa.com/talks/ppe.pdf

Sowa, John F. (2017) An introduction to existential graphs, a collection of slides from various lectures.
http://jfsowa.com/talks/egintro.pdf

Sowa, John F. (2018) Reasoning with diagrams and images, Journal of Applied Logics 5:5, 987-1059.
http://www.collegepublications.co.uk/downloads/ifcolog00025.pdf

Stewart, John (1996) Theorem Proving Using Existential Graphs, MS Thesis, Computer and Information
Science, University of California at Santa Cruz.

Stjernfelt, Frederik (2007) Diagrammatology: An Investigation on the Borderlines of Phenomenology,
Ontology, and Semiotics, Berlin: Springer.

http://www.collegepublications.co.uk/downloads/ifcolog00025.pdf
http://jfsowa.com/talks/egintro.pdf
http://jfsowa.com/talks/ppe.pdf
http://jfsowa.com/pubs/eg2cg.pdf
http://jfsowa.com/pubs/egtut.pdf
http://jfsowa.com/cg/cg_hbook.pdf
http://jfsowa.com/pubs/worlds.pdf
http://jfsowa.com/pubs/csp21st.pdf
https://www.textlog.de/4258.html

	John F. Sowa
	1. Syntax of Existential Graphs
	2. Common Logic
	3. Propositions, Situations, and Metalanguage
	4. Diagrammatic Reasoning
	5. EGIF Grammar
	5.1 Lexical Rules
	5.2 Phrase-Structure Rules
	5.3 Constraints and Examples

	References

